Signed Bipartite Graph Neural Networks

Junjie Huang $^{1,3},\,$ Huawei Shen $^{1,3},\,$ Qi Cao $^1,\,$ Shuchang Tao $^{1,3},\,$ Xueqi $\rm Cheng^2$

¹Data Intelligence System Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China ²CAS Key Laboratory of Network Data Science and Technology, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China ³University of Chinese Academy of Sciences, Beijing, China {huangjunjie17s, shenhuawei, caoqi, taoshuchang18z, cxq}@ict.ac.cn

September 28, 2021

- 2 Related Work
- **3** Balance Theory in Signed Bipartite Networks
- Proposed Methodology
- **5** Experiments
- 6 Conclusions and Future Work

2 Related Work

3 Balance Theory in Signed Bipartite Networks

Proposed Methodology

6 Experiments

6 Conclusions and Future Work

Signed Bipartite Networks

Consider a signed bipartite network, G = (U, V, E), where U = {u₁, u₂, ..., u_{|U|}} and V = {v₁, v₂, ..., v_{|V|}} represent two sets of nodes with the number of nodes |U| and |V|. E ⊂ U × V is the edges between U and V. E = E⁺ ∪ E⁻ is the set of edges between the two sets of nodes U and V where E⁺ ∩ E⁻ = Ø, E⁺ and E⁻ represent the sets of positive and negative edges, respectively.

It is commonly found in many fields including business, politics, and academics, but has been less studied.

2 Related Work

③ Balance Theory in Signed Bipartite Networks

Proposed Methodology

6 Experiments

6 Conclusions and Future Work

Signed Graph Modeling

Signed networks are such social networks having both positive and negative links.

Balance theory is the fundamental theory in the signed network field.

• For classical signed networks, signed triangles are the most common way to measure the balance of signed networks.

Figure: Illustration of structural balance theory. (Huang et al., ICANN2019)

5/20

Graph Representation Learning

Graph representation learning

- Matrix factorization-based methods
 - HOPE (Ou et al., 2016, KDD2016)
- Random-walk based algorithms
 - DeepWalk (Perozzi et al., KDD2014), Node2vec (Grover and Leskovec, KDD2016), LINE (Tang et al., WWW2015)
 - BiNE (Gao et al., SIGIR2016)
- Graph neural networks
 - GCN (Kipf and Welling, ICLR2017), GraphSAGE (Hamilton et al., NIPS2017), GAT (Veličković et al., ICLR2018), GIN (Xu et al., ICLR2018)

Signed graph representation learning

- Signed network embeddings
 - SiNE (Wang et al., SIAM2017), SIDE (Kim et al., WWW2018)
- Signed GNNs
 - SGCN (Derr et al., ICDM2018), SDGNN (Huang et al., AAAI2021)

2 Related Work

3 Balance Theory in Signed Bipartite Networks

- Proposed Methodology
- **5** Experiments
- 6 Conclusions and Future Work

In different scenarios, the negative ratio varies.

	Bonanza	U.S. House	U.S. Senate	Preliminary Review	Final Review
$ \mathcal{U} $	7,919	515	145	182	182
$ \mathcal{V} $	1,973	1,281	1,056	304	304
$ \mathcal{E} = \mathcal{E}^+ + \mathcal{E}^- $	36,543	114,378	27,083	1,170	1,170
% Positive Links	0.980	0.540	0.553	0.403	0.397
% Negative Links	0.020	0.460	0.447	0.597	0.603

Signed Caterpillars, Signed Butterflies and Signed Triangles

Two different perspectives:

9/20

Figure: Perspective 1 offers to analyze the signed butterfly isomorphism. For Perspective 2, we can analyze the signed triangle isomorphism by sign construction.

Findings:

- Large majority of signed butterflies/signed triangles in signed bipartite networks are more balanced than expectation.
- In the scenario of peer reviews, after rebuttal phase, the balance of signed bipartite networks increased.

	Bonanza	U.S. House	U.S. Senate	Preliminary Review	Final Review
Signed Butterfly Isomorphism ++++ (%, %E) Signed Butterfly Isomorphism + (%, %E) Signed Butterfly Isomorphism + (%, %E) Signed Butterfly Isomorphism (%, %E)	(0.986, 0.922) (0.000, 0.001) (0.001, 0.001) (0.000, 0.001) (0.000, 0.000)	(0.244, 0.085) (0.109, 0.123) (0.111, 0.123) (0.186, 0.123) (0.147, 0.045)	(0.262, 0.094) (0.108, 0.122) (0.110, 0.122) (0.184, 0.122) (0.133, 0.040)	(0.109, 0.026) (0.109, 0.116) (0.101, 0.116) (0.156, 0.116) (0.249, 0.127)	(0.115↑, 0.025) (0.072↓, 0.115) (0.057↓, 0.115) (0.215↑, 0.115) (0.315↑, 0.133)
Balanced Signed Butterfly Summary (%, %E)	(0.988, 0.924)	(0.798, 0.500)	(0.798, 0.500)	(0.724, 0.501)	(0.774 [↑] , 0.501)
Signed Butterfly Isomorphism +++- (%, %E)	(0.012, 0.076)	(0.118, 0.289)	(0.122, 0.302)	(0.070, 0.156)	(0.075 [↑] , 0.151)
Signed Butterfly Isomorphism + (%, %E)	(0.000, 0.000)	(0.085, 0.211)	(0.081, 0.197)	(0.206, 0.343)	(0.151↓, 0.349)
Unbalanced Signed Butterfly Summary (%, %E)	(0.012, 0.076)	(0.202, 0.500)	(0.202, 0.500)	(0.276, 0.499)	(0.226↓, 0.499)
Signed Triangles Isomorphism +++ in \mathcal{U} (%, %E)	(0.978, 0.949)	(0.338, 0.217)	(0.360, 0.248)	(0.327, 0.213)	(0.446↑, 0.310)
Signed Triangles Isomorphism + in \mathcal{U} (%, %E)	(0.011, 0.001)	(0.476, 0.287)	(0.436, 0.261)	(0.451, 0.290)	(0.346↓, 0.212)
Balanced Signed Triangles Summary in \mathcal{U} (%, %E)	(0.989 , 0.950)	(0.815 , 0.504)	(0.796 , 0.508)	(0.778 , 0.504)	(0.792 ↑, 0.522)
Signed Triangle Isomorphism ++- in \mathcal{U} (%, %E)	(0.011, 0.050)	(0.176, 0.432)	(0.189, 0.440)	(0.194, 0.431)	(0.195↑, 0.444)
Signed Triangle Isomorphism in \mathcal{U} (%, %E)	(0.000, 0.000)	(0.009, 0.063)	(0.015, 0.051)	(0.027, 0.065)	(0.012↓, 0.034)
Unbalanced Signed Triangles Summary in \mathcal{U} (%, %E)	(0.011 , 0.050)	(0.185 , 0.496)	(0.204 , 0.492)	(0.222 , 0.496)	(0.208 ↓, 0.478)

- 2 Related Work
- **3** Balance Theory in Signed Bipartite Networks
- Proposed Methodology
- **5** Experiments
- 6 Conclusions and Future Work

Message/Aggregation/Update Function

Figure: Illustration of SBGNN. SBGNN Layer includes Aggeregate and Update functions. The aggregated message comes from the Set_1 and Set_2 with positive and negative links. After getting the embedding of the node u_i and v_i , it can be used to predict the link sign relationship.

GNNs Message Passing Scheme

$$\begin{split} m_{j \to i}^{(l)}(i,j) &= \mathrm{Msg}^{(l)}\left(h_{i}^{(l)},h_{j}^{(l)},h_{e_{ji}}^{(l)}\right), j \in \mathcal{N}(j), \\ m_{j \to i}^{(l)}(i) &= \mathrm{Agg}^{(l)}\left(\left\{m_{j \to i}^{(l)}(i,j) \mid j \in \mathcal{N}(i)\right\}\right), \\ h_{i}^{(l+1)} &= \mathrm{UPT}^{(l)}\left(h_{i}^{(l)},m_{j \to i}^{(l)}(i)\right), \end{split}$$

Loss Function

- After getting embeddings $z_{u_i} \in \mathbb{R}^{d_u}$ and $z_{v_j} \in \mathbb{R}^{d_v}$ of the node u_i and v_j , we can use following methods to get the prediction value for $u_i \rightarrow v_j$.
 - product operation:

$$y_{pred} = \operatorname{sigmoid}(z_{u_i}^\top \cdot z_{v_j}),$$

where ·[⊤] is the transpose function and sigmoid is the sigmoid function f(x) = 1/(1+e^{-x}).
MLP:

$$y_{pred} = \operatorname{sigmoid}(\operatorname{MLP}(z_{u_i} \parallel z_{v_i}))$$

where MLP is a two layer neural networks, $\|$ is the concatenation operation.

• After getting the prediction values, we use binary cross entropy as the loss function:

$$\mathcal{L} = -w \left[y \cdot \log y_{\textit{pred}} + (1 - y) \cdot \log(1 - y_{\textit{pred}})
ight]$$

where w is the rescaling weight for the unblanced negative ratios; y is the ground truth with mapping $\{-1, 1\}$ to $\{0, 1\}$.

- 2 Related Work
- **3** Balance Theory in Signed Bipartite Networks
- Proposed Methodology
- **5** Experiments
- 6 Conclusions and Future Work

Experimental Settings

- Datasets
 - Bonanza, Review, U.S. House, U.S. Senate
- Tasks: LINK SIGN PREDICTION (binary classification problem)
- Train/Val/Test: 85/5/10 (5 times train/val/test splits)
- Baselines:
 - Random Embeddings
 - Unsigned Network Embeddings: DeepWalk, Node2vec, LINE
 - Signed/Bipartite Network Embedding: SiNE, BiNE, SBiNE
 - Signed Butterfly Based Methods: SCsc, MFwBT, SBRW
 - Signed Bipartite Graph Neural Networks: SBGNN-MEAN, SBGNN-GAT

15/20

- Evaluation Metrics
 - AUC, Binary-F1, Macro-F1, and Micro-F1

Table: The results of Link Sign Prediction on four datasets.

		Random Embedding	U Netwo	Jnsigned rk Embedd	ing	g Signed/Bipartite g Network Embedding		Signed Butterfly Based Methods		Signed Bipartite Graph Neural Networks			
Dataset	Metric	Random	Deepwalk	Node2vec	LINE	SiNE	BiNE	SBiNE	SCsc	MFwBT	SBRW	SBGNN-MEAN	SBGNN-GAT
Bonanza	AUC	0.5222	0.6176	0.6185	0.6124	0.6088	0.6026	0.5525	0.6524	0.5769	0.5315	0.5841	0.5769
	Binary-F1	0.7282	0.7843	0.7530	0.6974	0.9557	0.7426	0.8514	0.6439	0.8927	0.9823	0.9488*	0.9616*
	Macro-F1	0.3868	0.4258	0.4087	0.3790	0.5422	0.4016	0.4538	0.3543	0.4813	0.5353	0.5311*	0.5404^{*}
	Micro-F1	0.5770	0.6497	0.6093	0.5424	0.9157	0.5960	0.7436	0.4843	0.8076	0.9652	0.9044*	0.9269*
	AUC	0.5489	0.6324	0.6472	0.6236	0.5741	#N/A	0.5329	0.5522	0.4727	0.5837	0.6584*	0.6747*
Dentions	Binary-F1	0.4996	0.5932	0.6141	0.5974	0.5247	#N/A	0.4232	0.3361	0.4346	0.5423	0.6128*	0.6366*
Review	Macro-F1	0.5426	0.6268	0.6400	0.6120	0.5688	#N/A	0.5262	0.4823	0.4696	0.5767	0.6556*	0.6629*
	Micro-F1	0.5487	0.6325	0.6444	0.6137	0.5744	#N/A	0.5521	0.5812	0.4752	0.5812	0.6632*	0.6667*
U.S. House	AUC	0.5245	0.6223	0.6168	0.5892	0.6006	0.6103	0.8328	0.8274	0.8097	0.8224	0.8474*	0.8481*
	Binary-F1	0.5431	0.6401	0.6323	0.6304	0.6118	0.6068	0.8434	0.8375	0.8234	0.8335	0.8549*	0.8560*
	Macro-F1	0.5238	0.6215	0.6158	0.5883	0.5991	0.6097	0.8323	0.8267	0.8096	0.8219	0.8463*	0.8471*
	Micro-F1	0.5246	0.6224	0.6166	0.5892	0.5996	0.6108	0.8330	0.8274	0.8106	0.8226	0.8468*	0.8476*
U.S. Senate	AUC	0.5251	0.6334	0.6260	0.5743	0.5875	0.6071	0.7998	0.8163	0.7857	0.8142	0.8209*	0.8246*
	Binary-F1	0.5502	0.6603	0.6526	0.6159	0.5923	0.5968	0.8175	0.8294	0.8043	0.8291	0.8277	0.8320
	Macro-F1	0.5239	0.6325	0.6251	0.5722	0.5842	0.6037	0.7992	0.8148	0.7850	0.8131	0.8177*	0.8215*
	Micro-F1	0.5254	0.6347	0.6271	0.5732	0.5848	0.6042	0.8009	0.8160	0.7867	0.8145	0.8183*	0.8221*

• Modeling the balance theory in the signed bipartite network is key for LINK SIGN PREDICTION .

- 16 / 20

• Our SBGNN models outperform other baseline models.

Parameter Analysis and Ablation Study

Figure: Parameter analysis on the number of SBGNN Layer *I* and imension *d* for SBGNN on the U.S. House dataset.

Table: Ablation study results for SBGNN modelon the U.S. House dataset.

Method	AUC	Binary-F1	Macro-F1	Micro-F1
SBGNN-GAT	0.8485	0.8586	0.8477	0.8485
SBGNN-GAT (w/o Set1)	0.8406	0.8521	0.8400	0.8409
SBGNN-GAT (w/o Set ₂)	0.8440	0.8567	0.8438	0.8448
SBGNN-GAT (with LR)	0.6281	0.6195	0.6227	0.6227
SBGNN-GAT (with MLP)	0.8365	0.8480	0.8358	0.8367
SBGNN-MEAN	0.8447	0.8519	0.8429	0.8434
SBGNN-MEAN (w/o Set1)	0.8419	0.8496	0.8402	0.8408
SBGNN-MEAN (w/o Set ₂)	0.8296	0.8410	0.8288	0.8297
SBGNN-MEAN (with LR)	0.6285	0.6387	0.6263	0.6267
SBGNN-Mean (with Mlp)	0.8443	0.8531	0.8430	0.8436

17 / 20

- d=32 and l=2 can have a better result.
- MLP is much better than simple LR but not better than product operation.

- 2 Related Work
- **3** Balance Theory in Signed Bipartite Networks
- Proposed Methodology
- **5** Experiments
- 6 Conclusions and Future Work

Conclusions and Future Work

Conclusions

- We discuss two different perspectives to model the signed bipartite networks.
- We further use these two perspectives to model peer review and find that after rebuttal, the balance of reviewers' opinions improved.
- Under the definition of a new perspective, we propose a new graph neural network model SBGNN to learn the node representation of signed bipartite graphs .
- Our SBGNN model achieve the state-of-the art performance in several datasets.

Future work

- We will explore signed bipartite networks with node features.
- We will try to introduce signed bipartite graph neural networks into recommender system.

- 19 / 20

Reference |

- T. Derr, Y. Ma, and J. Tang. Signed graph convolutional networks. In 2018 IEEE International Conference on Data Mining (ICDM), pages 929-934. IEEE, 2018.
- M. Gao, L. Chen, X. He, and A. Zhou. Bine: Bipartite network embedding. In The 41st international ACM SIGIR conference on research & development in information retrieval, pages 715-724, 2018.
- A. Grover and J. Leskovec. node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pages 855-864, 2016.
- W. L. Hamilton, R. Ying, and J. Leskovec. Inductive representation learning on large graphs. In Proceedings of the 31st International Conference on Neural Information Processing Systems, pages 1025-1035, 2017.
- J. Huang, H. Shen, L. Hou, and X. Cheng. Signed graph attention networks. In International Conference on Artificial Neural Networks, pages 566-577, Springer, 2019.
- J. Huang, H. Shen, L. Hou, and X. Cheng. Sdgnn: Learning node representation for signed directed networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages 196-203, 2021.
- J. Kim, H. Park, J.-E. Lee, and U. Kang. Side: representation learning in signed directed networks. In Proceedings of the 2018 World Wide Web Conference, pages 509-518, 2018.
- T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks. In International Conference on Learning Representations, 2019.
- M. Ou, P. Cui, J. Pei, Z. Zhang, and W. Zhu. Asymmetric transitivity preserving graph embedding. In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pages 1105–1114, 2016.
- B. Perozzi, R. Al-Rfou, and S. Skiena. Deepwalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 701-710, 2014.
- J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei. Line: Large-scale information network embedding. In Proceedings of the 24th international conference on world wide web, pages 1067-1077, 2015.
- P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio, Graph attention networks. International Conference on Learning Representations, 2018. URL https://openreview.net/forum?id=rJXMpikCZ.
- S. Wang, J. Tang, C. Aggarwal, Y. Chang, and H. Liu. Signed network embedding in social media. In Proceedings of the 2017 SIAM international conference on data mining, pages 327-335. SIAM, 2017.
- K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural networks? In International Conference on Learning Representations, 2018.

