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Background

Signed Bipartite Networks

e Consider a signed bipartite network, G = (U, V, E), where
U= {ur,u,...;upy} and V = {v1, v, ..., vjy|} represent two sets of
nodes with the number of nodes || and |V|. € CU x V is the edges
between U/ and V. £ = ET|JE is the set of edges between the two
sets of nodes I/ and V where ETNE™ = &, £F and £ represent the
sets of positive and negative edges, respectively.

It is commonly found in many fields including business, politics, and
academics, but has been less studied.
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Signed Graph Modeling

Signed networks are such social networks having both positive and
negative links.

Balance theory is the fundamental theory in the signed network field

® For classical signed networks, signed triangles are the most common
way to measure the balance of signed networks.

+ + -
O ©
Figure: lllustration of structural balance theory. (Huang et al., ICANN2019)
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Graph Representation Learning

Graph representation learning
® Matrix factorization-based methods
® HOPE (ou et al., 2016, KDD2016)

® Random-walk based algorithms

L4 DeepWalk (Perozzi et al., KDD2014), Node2vec (Grover and Leskovec, KDD2016),
LINE (Tang et al., www2015)
® BIiNE (Gao et al., SIGIR2016)

® Graph neural networks

® GCN (Kipf and Welling, ICLR2017), GraphSAGE (Hamilton et al., NIPS2017),
GAT (Velickovi¢ et al., 1CLR2018), GIN (Xu et al., ICLR2018)

Signed graph representation learning

® Signed network embeddings
® SiNE (wWang et al., s1aM2017), SIDE (Kim et al., www2018)

e Signed GNNs
® SGCN (Derr et al., Icom2018), SDGNN (Huang et al., AAAI2021)
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Signed Bipartite Networks

In different scenarios, the negative ratio varies.
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US. Preliminary Final

Bonnza House Senate Review Review Signed Bipartite Network
|u| 7,919 515 145 182 182
V| 1,973 1,281 1,056 304 304

|E] = |E*+187| 36,543 114,378 27,083 1,170 1,170
% Positive Links ~ 0.980  0.540 0553  0.403 0.397
% Negative Links  0.020 0460 0.447 0597 0.603
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Signed Caterpillars, Signed Butterflies and Signed Triangles

Two different perspectives:

Perspectiveli [v.]
VLI I 1T ] < 1<
© WO 060 O B B VO ©
B S e L & e e T

Balanced Unbalanced

Perspective 2 é @ @ ﬂ @ @ i

ST IS TETFTF == + ==
Sign Construction Balanced Unbalanced

Figure: Perspective 1 offers to analyze the signed butterfly isomorphism.
For Perspective 2, we can analyze the signed triangle isomorphism by sign
construction.
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Balance Theory Analysis

Findings:
® |arge majority of signed butterflies/signed triangles in signed bipartite
networks are more balanced than expectation.

® In the scenario of peer reviews, after rebuttal phase, the balance of
signed bipartite networks increased.

B Us. us. Preliminary Final
G House Senate Review Review
Signed Butterfly Isomorphism ++++ (%, %E) (0.986,0.922)  (0.244,0.085)  (0.262,0.094)  (0.109,0.026)  (0.1157, 0.025)
Signed Butterfly Isomorphism +--+ (%, %E) (0.000,0.001)  (0.109,0.123)  (0.108,0.122)  (0.109,0.116)  (0.072}, 0.115)
Signed Butterfly Isomorphism ++-- (%, %E) (0.001,0.001)  (0.111,0.123)  (0.110,0.122) ~ (0.101,0.116) ~ (0.057], 0.115)
Signed Butterfly Isomorphism +-+- (%, %E) (0.000,0.001)  (0.186,0.123)  (0.184,0.122)  (0.156,0.116)  (0.2157, 0.115)
Signed Butterfly Isomorphism ---- (%, %E) (0.000,0.000)  (0.147,0.045)  (0.133,0.040)  (0.249, 0.127)  (0.3157, 0.133)
Balanced Signed Butterfly Summary (%, %E) (0.988,0.924) (0.798,0.500) (0.798, 0.500) (0.724, 0.501) (0.7747, 0.501)
Signed Butterfly Isomorphism +++- (%, %E) (0.012,0.076)  (0.118,0.289)  (0.122,0.302) ~ (0.070,0.156) ~ (0.075T, 0.151)
Signed Butterfly Isomorphism +--- (%, %E) (0.000,0.000)  (0.085,0.211)  (0.081,0.197)  (0.206, 0.343)  (0.151], 0.349)
Unbalanced Signed Butterfly Summary (%, %E) (0.012,0.076)  (0.202, 0.500) (0.202, 0.500) (0.276, 0.499) (0.226, 0.499)
Signed Triangles Isomorphism +++ in U (%, %E) (0.978,0.949)  (0.338,0.217)  (0.360, 0.248) ~ (0.327,0.213)  (0.446T, 0.310)
Signed Triangles Isomorphism +-- in U (%, %E) (0.011,0.001)  (0.476,0.287)  (0.436,0.261)  (0.451,0.290)  (0.346], 0.212)
Balanced Signed Triangles Summary in U (%, %E) (0.989,0.950) (0.815,0.504) (0.796, 0.508) (0.778, 0.504) (0.792T, 0.522)
Signed Triangle Isomorphism ++- in U (%, %E) (0.011,0.050)  (0.176,0.432)  (0.189, 0.440)  (0.194,0.431)  (0.195T, 0.444)
Signed Triangle Isomorphism --- in U (%, %E) (0.000,0.000)  (0.009,0.063) (0.015,0.051)  (0.027,0.065)  (0.012], 0.034)

Unbalanced Signed Triangles Summary in U(%, %E) ~ (0.011,0.050) (0.185,0.496) (0.204, 0.492) (0.222, 0.496) (0.208], 0.478)
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Message /Aggregation /Update Function

Aggregate Update Aggregate Update
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Figure: lllustration of SBGNN. SBGNN Layer includes Aggeregate and Update functions. The
aggregated message comes from the Set; and Sety with positive and negative links. After
getting the embedding of the node u; and v;, it can be used to predict the link sign relationship.

i, (1.0) = Msc (4000, 4)) . € AT,
mj(.il.(i) = Acc ({ J*)I(l Q) jieN( )})

141 )
AT = ypr) (h( J_H( ))
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® After getting embeddings z,, € RY% and z, € R9 of the node u;j and
vj, we can use following methods to get the prediction value for
uj — vj.
® product operation:
Ypred = sigmoid(z,) - z,,),
where - is the transpose function and sigmoid is the sigmoid function
_ 1
* MLp:
Ypred = sigmoid(MLP(zui I zv,.))
where MLP is a two layer neural networks, || is the concatenation
operation.
® After getting the prediction values, we use binary cross entropy as the
loss function:

L=-w [y : |Ogypred + (1 - }/) : |Og(1 - }/pred)]

where w is the rescaling weight for the unblanced negative ratios; y is
the ground truth with mapping {—1,1} to {0,1}.
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Experimental Settings

® Datasets
® Bonanza, Review, U.S. House, U.S. Senate

Tasks: LINK SIGN PREDICTION (binary classification problem)
Train/Val/Test: 85/5/10 (5 times train/val/test splits)
Baselines:

® Random Embeddings
Unsigned Network Embeddings: DeepWalk, Node2vec, LINE
Signed/Bipartite Network Embedding: SiNE, BiNE, SBIiNE
Signed Butterfly Based Methods: SCsc, MFWBT, SBRW
Signed Bipartite Graph Neural Networks: SBGNN-MEAN,
SBGNN-GAT
Evaluation Metrics

® AUC, Binary-F1, Macro-F1, and Micro-F1
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Experiment results

Table: The results of Link Sign Prediction on four datasets.

Random Unsigned Signed/Bipartite Signed Butterfly Signed Bipartite

beddi; Network Embeddi Network Embeddi Based Methods Graph Neural Networks

Dataset | Metric | Random |Deepwalk Node2vec LINE | SINE BIiNE SBiNE| SCsc MFwBT SBRW | SBGNN-Mean SBGNN-Gar
AUC 0.5222 0.6176 0.6185  0.6124| 0.6088 0.6026 0.5525|0.6524 0.5769 0.5315 0.5841 0.5769
Bonanza Binary-F1 0.7282 0.7843 0.7530  0.6974| 0.9557 0.7426 0.8514 | 0.6439 0.8927 0.9823 0.9488* 0.9616*
Macro-F1 0.3868 0.4258 0.4087  0.3790|0.5422 0.4016 0.4538 | 0.3543 0.4813 0.5353 0.5311* 0.5404*
Micro-F1 0.5770 0.6497 0.6093  0.5424| 0.9157 0.5960 0.7436 | 0.4843 0.8076 0.9652 0.9044* 0.9269*
AUC 0.5489 0.6324 0.6472  0.6236 | 0.5741 #N/A 0.5329 | 0.5522 0.4727 0.5837 0.6584* 0.6747*
T Binary-F1 0.4996 0.5932 0.6141  0.5974| 0.5247 #N/A 0.4232 03361 04346 0.5423 0.6128* 0.6366*
Macro-F1 0.5426 0.6268 0.6400  0.6120 | 0.5688 #N/A 0.5262 | 0.4823 0.4696 0.5767 0.6556* 0.6629*
Micro-F1 0.5487 0.6325 0.6444  0.6137 | 0.5744 #N/A 0.5521|0.5812 0.4752 0.5812 0.6632* 0.6667"
AUC 0.5245 0.6223 0.6168  0.5892 | 0.6006 0.6103 0.8328 | 0.8274 0.8097 0.8224 0.8474* 0.8481*
US. House Binary-F1 0.5431 0.6401 0.6323  0.6304| 0.6118 0.6068 0.8434 | 0.8375 0.8234 0.8335 0.8549* 0.8560"
- Macro-F1 0.5238 0.6215 0.6158  0.5883| 0.5991 0.6097 0.8323 | 0.8267 0.8096 0.8219 0.8463* 0.8471*
Micro-F1 0.5246 0.6224 0.6166  0.5892| 0.5996 0.6108 0.8330 | 0.8274 0.8106 0.8226 0.8468* 0.8476*
AUC 0.5251 0.6334 0.6260  0.5743| 0.5875 0.6071 0.7998 | 0.8163 0.7857 0.8142 0.8209* 0.8246*
US. Senate Binary-F1 0.5502 0.6603 0.6526  0.6159| 0.5923 0.5968 0.8175|0.8294 0.8043 0.8291 0.8277 0.8320
- Macro-F1 0.5239 0.6325 0.6251  0.5722| 0.5842 0.6037 0.7992 | 0.8148 0.7850 0.8131 0.8177* 0.8215*
Micro-F1 0.5254 0.6347 0.6271  0.5732 | 0.5848 0.6042 0.8009 | 0.8160 0.7867 0.8145 0.8183* 0.8221*

® Modeling the balance theory in the signed bipartite network is key for
LINK SIGN PREDICTION .

® Our SBGNN models outperform other baseline models.
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Parameter Analysis and Ablation Study

086 0.56 Table: Ablation study results for SBGNN model
085 on the U.S. House dataset.
0.84
Soss
2o
082 Method | AUC Binary-FI Macro-F1 Micro-F1
—¥— SBGNN-GAT —¥— SBGNN-GAT
0.81 —e— SBGNN-MEAN 0.81 —e— SBGNN-MEAN SBGNN-GAT 0.8485  0.8586 08477 08485
0.80 0.80 SBGNN-GAT (w/o Set1) | 0.8406  0.8521 08400  0.8409
0 i ]3] b3 4 0 g(_) . 1o SBGNN-GAT (w/o Setz) | 0.8440  0.8567 0.8438 0.8448
ayer Rumber mension SBGNN-GaT (with Lr) | 0.6281  0.6195 0.6227 0.6227
(@) #Layer [ (b) Dimension d SBGNN-GaT (with MLp) | 0.8365  0.8480 08358 08367
SBGNN-MEAN 0.8447  0.8519 08429 08434
SBGNN-MEAN (w/o Set;) | 0.8419  0.8496 08402 08408
Figure: Parameter analysis on the number of SBGNN-MEAN (/0 Setz) | 0.8296  0.8410 08288 08297
X . SBGNN-MEAN (with L) | 0.6285  0.6387 06263 06267
SBGNN Layer / and imension d for SBGNN on SBGNN-MeAN (with Mir) | 08443 08531 08430 08436

the U.S. House dataset.

® d=32 and /=2 can have a better result.

® MLP is much better than simple LR but not better than product
operation.
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Conclusions and Future Work

Conclusions

® We discuss two different perspectives to model the signed bipartite
networks.

® We further use these two perspectives to model peer review and find
that after rebuttal, the balance of reviewers' opinions improved.

® Under the definition of a new perspective, we propose a new graph
neural network model SBGNN to learn the node representation of
signed bipartite graphs .

® Our SBGNN model achieve the state-of-the art performance in several
datasets.

Future work
® We will explore signed bipartite networks with node features.

® We will try to introduce signed bipartite graph neural networks into
recommender system.
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