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Related Work

GNN-based Recommendation
Matrix Factorization (MF) methods: BPRMF (Rendle et al., 2012), DMF (Xue et al.,

IJCAI2017), NeuMF (He et al., WWW2017)

Auto-encoder (AE) methods: Mult-VAE (Liang et al., WWW2018)

Graph Neural Networks (GNNs): NGCF (Wang et al., SIGIR2019), LightGCN (He et al.,

SIGIR2020), DGCF (Wang et al., WWW2020)

Most GNN methods in recommender system follow the message-passing
scheme (Gilmer et al., ICML2017) to utilize the bipartite graph structure.

Contrastive Learning in Recommendation
Contrastive Learning (CL) as a self-supervised manner, has been applied in
Recommender Systems (RS), including SSL+DNN (Yao et al., CIKM2021),
SGL (Wu et al., SIGIR2021), SimGCL (Yu et al., SIGIR2022), NCL (Lin et al., WWW2022).
Graph Contrastive Learning (GCL) is often used to alleviate the data
sparsity and popularity bias problem.
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GNN-based CF I

Bipartite Graph in Recommendation
As the fundamental recommender system, collaborative filtering (CF) can be
modelled as a user-item bipratite graph as G = (U , I, E), where U is the
user set, I is the item set and E ⊆ U × I is the inter-set edges.
E can be denoted as the user-item interaction matrix R ∈ {0, 1}|U|×|I|. The
adjacency matrix A =

[
0 R

R⊤ 0

]
is also widely used in He et al. (2020).

GNN-based Collaborative Filtering
Based on the bipartite graph A, the general GNN-based CF methods follow
the message-passing scheme:

zl
w = faggregate

({
zl−1

v | v ∈ Nw ∪ {w}
})

, zw = fupdate
([

z0
w, z1

w, . . . , zL
w

])
,

where N denotes the neighbor set of node w and L denotes the number of
GNN layers.
faggregate and fupdate are aggregate function and update function designed
by different models.
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GNN-based CF II

LightGCN

LightGCN (He et al., SIGIR2020) applies a simple weighted sum aggregator:

Zl+1 =
(

D− 1
2 AD− 1

2

)
Zl, Z = 1

L + 1
(Z0 + Z1 + · · · + ZL),

where Dii =
∑

j Aij is the diagonal matrix and Z0 is initial trainable
embeddings. After obtaining the final embedding Z, the inner product is
used to predict how likely user u would adopt item i by ŷui = zT

u zi.
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GNN-based CF III

Loss Function
Most GNN-based CF methods (e.g., NGCF (Wang et al., SIGIR2019), DGCF (Wang

et al., WWW2020), and LightGCN (He et al., SIGIR2020)) use the pairwise Bayesian
Personalized Ranking (BPR) loss function for the model training:

LBPR =
∑

(u,i,j)∈O

− log σ (ŷui − ŷuj) ,

where O = {(u, i, j)|(u, i) ∈ O+, (u, j) ∈ O−}, O+ and O− are the
observed and unobserved interactions, respectively.
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GCL in Recommendation I

Graph Contrastive Learning in Recommendation
Data Augmentation
• Common data augmentation is the perturbation of the graph structure due to

the absence of node features.(e.g., Edge-dropping (Wu et al., SIGIR2021).)
• InfoMin principle that the good set of views shares the minimal information

necessary to perform well at the downstream task.

SGL (Wu et al., SIGIR2021)
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GCL in Recommendation II

Contrastive Loss
Augmented views of the same user node are treated as the positive pairs
(i.e., {(z′

u, z′′
u)}), and the views of different user nodes are treated as the

negative pairs (i.e., {(z′
u, z′′

v })).
InfoNCE Loss: Maximization principle (InfoMax) that aims to maximize the
correspondence between the representations of the nodes in its different
augmented graphs.

LU
NCE =

∑
u∈U

− log exp (sim (z′
u, z′′

u) /τ)∑
v∈U exp (sim (z′

u, z′′
v) /τ)

,

where τ is the temperature hyper-parameters and sim is the similarity
function (e.g., cosine function).
Analogously, contrastive loss is also adopted on the item side (i.e., LI

NCE).
The final contrastive loss is the combination of two losses as
LNCE = LU

NCE + LI
NCE.
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GCL in Recommendation III

Joint training scheme L = LRec + λ1LNCE + λ2LReg
Contrastive learning in recommender systems usually adopts the joint
learning strategy to train their model instead of pre-training and fine-tuning
strategies.
Both pretext tasks and downstream tasks are optimized jointly.
SGL (Wu et al., SIGIR2021) demonstrate that joint training will achieve better
performance, the pretext tasks and downstream tasks are mutually enhanced
with each other.
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Framework
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Figure: Illustration of our framework LDA-GCL. LDA-GCL includes learning data augmentation
and graph contrastive learning.
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Graph Data Augmentation With Edge Operating I

Edge-Dropping Data Augmentations
Generally edge-dropping is as follows:

s1(G) = A1 = A ⊙ M1, s2(G) = A2 = A ⊙ M2,

where ⊙ is the Hadamard product and M1, M2 ∈ {0, 1}|V |×|V | are two
masking matrices to be applied on the original graph G to generate two
augmented graph adjacency matrix A1 and A2.

Sampling edges follow a uniform distribution to keep (1 − ρ) × |E| edges,
where ρ is the edge-dropping ratio. ρ is usually set to a small value (e.g.,
0.1).

Weakness:
• High complexity of randomly sampling edges from A is O((|V |)2).
• Introduce noises by randomly adding edges.
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Graph Data Augmentation With Edge Operating II

Edge-Operating Data Augmentation
A new data augmentation in recommender systems (i.e., edge-operating
including both edge-adding and edge-dropping).
• Edge Suggestion
• Edge Adding
• Edge Dropping
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Learning Data Augmentation

Learnable edge operator model t
We use a Multi-layer Perception (MLP) to learn the weight for every edge
candidate eu,i as follows:

ωu,i = MLP ([zu ⊙ zi] ∥1E(eu,i)) ,

where ⊙ is the Hadamard product, zu and zi are the embeddings for user u
and item i, ∥ is the concatenation operator and 1E(eu,i) indicates if edge
eu,i belongs to original or added edges.
Gumbel-Max reparameterization (Jang et al., ICRL2017) to get the probability pu,i

for edge eu,i by

pu,i = sigmoid((log δ − log(1 − δ) + ωu,i)
τ

),

where δ ∼ Uniform(0,1) and τ is the temperature hyperparameter.

We use pu,i to construct augmented graphs t(G) = A′ =
(

0 P
P⊤ 0

)
,

where P ∈ R|U|×|I| is the probability matrix.
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Objective Function I

InfoMin and InfoMax:
Overall Objective Functions:

min
t

λtI(f(G); f(t(G))) + L(f(t(G)), y)

max
f

I(f(G); f(t(G))) − L(f(G), y),

where I(X1; X2) is the mutual information between two random variables
X1 and X2, t is the data augmentation learner, f is the GNN encoder and L
is the task relevant supervised loss function. λt is used to control the
influence of I for t.
t: MLP
f : LightGCN
L: BPR
I: InfoNCE Estimator
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Objective Function II

Mutual Information (MI) Estimator:
We use InfoNCE as the MI Estimator

I(f(G), f(t(G)) → −LNCE = 1
B

B∑
i=1

log exp (sim (zi,1, zi,2))∑B
i′=1,i′ ̸=i exp (sim (zi,1, zi′,2))

,

where sim is the cosine similarity to measure the agreement between two
representations, z is the node representaton encoded by f(G) and f(t(G)),
and B is the batch size.
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Objective Function III

Training LDA-GCL
Fix t:

Lf = LBPR(f(G), y) + λsslLNCE (f(G), f(t(G))) + λreg∥f∥2
2,

where λssl and λreg are the hyper-parameters to control the weights of the
InfoNCE loss function and the regularization term.
Fix f :

Lt = LBPR(f(t(G)), y) − λ2LNCE (f(G), f(t(G))) + λreg∥t∥2
2,

where λ2 = λt × λssl and λreg are the hyper-parameters to control the
weights of the InfoNCE loss function and the regularization term.
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Training LDA-GCL

Input: Original bipartite graph G(U , I, E); Pre-trained GNN encoder f0;
GNN encoder f ; Edge operator model t; Epoch T ;

Output: Node representation Z
1: Generate added edges E1 from pre-trained model f0.
2: Merge added edges E1 and original edges E into edge candidates E2.
3: Initialize the parameters of edge operator model t and GNN encoder f
4: for epoch = 1, ..., T do
5: for each mini-batch interactions B = {(u1, i1, i2)} do
6: Get node set V with user set U and item set I in mini-batch data

/* Optimize t */
7: Freeze GNN encoder f ; unfreeze edge operator t
8: Apply t on E2 to get augmented graph t(G) and Apply f to get

the embeddings Z1, Z2 for node V from G
9: Compute loss in Equation 16 with Z1 and Z2; Back propagation,

update t.
/* Optimize f */

10: Freeze edge operator t; unfreeze of GNN encoder f
11: Apply t on E2 to get augmented graph t(G) and Apply f to get

the embeddings Z1, Z2 for node V from G
12: Compute loss in Equation 16 with Z1 and Z2; Back propagation,

update f .
/* Judge early stopping condition */

13: if Z1 match the early stopping condition then
14: Stop training algorithm; Return the best GNN encoder fopt

15: end if
16: end for
17: end for
18: return Z = fopt(G)

Algorithm 1: LDA-GCL Training Algorithm
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RQs

RQ1: How does LDA-GCL perform in recommendation tasks as
compared with the state-of-the-art CF models and GCL models?

RQ2: If LDA-GCL performs well, what component benefits our
LDA-GCL in collaborative filtering tasks?

RQ3: What hyper-parameters affect the effectiveness of the
proposed LDA-GCL?
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Experimental Settings

Table: Statistics of the datasets used in this paper.

Datasets #Users #Items #Interactions %Density
Yelp 45,478 30,709 1,777,765 0.127

Gowalla 29,859 40,989 1,027,464 0.084
Amazon-Book 58,145 58,052 2,517,437 0.075

Alibaba-iFashion 300,000 81,614 1,607,813 0.007

Datasets: Yelp, Gowalla, Amazon-Book and Alibaba-iFashion.

Data splits: 80/10/10 - training/validation/testing data split 5 times
Baselines:

Matrix Factorization: BPRMF/NeuMF/DMF
Graph Neural Networks: NGCF/DGCF/ LightGCN
Graph Contrastive Learning: SGL/SimGCL/NCL

Metrics: Recall@N and NDCG@N (10, 20, 50)
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Performance Comparision

Table: Performance Comparison of Different Baseline Models. The best result is bolded and the
second result is underlined. ∗ indicates the statistical significance for p < 0.05

Matrix Factorization Graph Neural Networks Graph Contrastive Learning
Dataset Metric BPRMF NeuMF DMF NGCF DGCF LightGCN SGL SimGCL NCL LDA-GCL

Yelp

Recall@10 0.0499 0.0367 0.0372 0.0514 0.0606 0.0616 0.0664 0.0743 0.0713 0.0751∗

Recall@20 0.0829 0.0629 0.0631 0.0857 0.0987 0.1001 0.1072 0.1185 0.1135 0.1190∗

Recall@50 0.1549 0.1227 0.1215 0.1596 0.1798 0.1817 0.1928 0.2068 0.1997 0.2101∗

NDCG@10 0.0335 0.0242 0.0248 0.0346 0.0412 0.0419 0.0456 0.0515 0.0489 0.0518∗

NDCG@20 0.0438 0.0324 0.0327 0.0453 0.0530 0.0538 0.0581 0.0652 0.0619 0.0653∗

NDCG@50 0.0622 0.0477 0.0476 0.0642 0.0738 0.0748 0.0801 0.0878 0.0841 0.0886∗

Amazon-Book

Recall@10 0.0619 0.0442 0.0313 0.0575 0.0787 0.0783 0.0844 0.0872 0.0947 0.0975∗

Recall@20 0.0971 0.0726 0.0522 0.0920 0.1191 0.1210 0.1281 0.1251 0.1395 0.1456∗

Recall@50 0.1676 0.1331 0.0984 0.1624 0.1965 0.2055 0.2117 0.1934 0.2201 0.2346∗

NDCG@10 0.0431 0.0295 0.0216 0.0400 0.0563 0.0553 0.0606 0.0643 0.0685 0.0699∗

NDCG@20 0.0537 0.0382 0.0280 0.0505 0.0681 0.0682 0.0739 0.0758 0.0822 0.0845∗

NDCG@50 0.0721 0.0539 0.0400 0.0688 0.0887 0.0902 0.0956 0.0936 0.1034 0.1078∗

Gowalla

Recall@10 0.1040 0.0882 0.0634 0.0992 0.1343 0.1355 0.1386 0.1487 0.1496 0.1505
Recall@20 0.1525 0.1307 0.0945 0.1462 0.1917 0.1969 0.1969 0.2123 0.2131 0.2144
Recall@50 0.2476 0.2161 0.1559 0.2383 0.2972 0.3093 0.3055 0.3208 0.3228 0.3284∗

NDCG@10 0.0738 0.0603 0.0450 0.0703 0.0963 0.0961 0.0999 0.1078 0.1081 0.1085
NDCG@20 0.0878 0.0727 0.0540 0.0838 0.1127 0.1136 0.1166 0.1259 0.1263 0.1268
NDCG@50 0.1109 0.0935 0.0692 0.1062 0.1384 0.1411 0.1431 0.1525 0.1534 0.1547

Alibaba-iFashion

Recall@10 0.0297 0.0157 0.0138 0.0355 0.0361 0.0402 0.0518 0.0450 0.0490 0.0605∗

Recall@20 0.0458 0.0264 0.0229 0.0565 0.0549 0.0612 0.0774 0.0651 0.0729 0.0882∗

Recall@50 0.0784 0.0501 0.0443 0.0994 0.0910 0.1015 0.1258 0.1029 0.1178 0.1381∗

NDCG@10 0.0158 0.0079 0.0071 0.0185 0.0194 0.0216 0.0280 0.0252 0.0267 0.0335∗

NDCG@20 0.0199 0.0106 0.0094 0.0237 0.0241 0.0269 0.0344 0.0303 0.0328 0.0405∗

NDCG@50 0.0264 0.0152 0.0137 0.0323 0.0313 0.0350 0.0440 0.0378 0.0417 0.0504∗
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Sparsity Analysis
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Figure: Performance analysis over different users groups. G1 is the group of users with the
lowest interaction number.
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Ablation Study

Table: Performance comparison of different variants of LDA-GCL.

Method Gowalla Alibaba-iFashion
Recall@10 NDCG@10 Recall@10 NDCG@10

LightGCN 0.1342 0.0962 0.0395 0.0212
DA-GCL(0.0,0.0) 0.1488 0.1085 0.0497 0.0274
DA-GCL(0.1,0.0) 0.1492 0.1083 0.0529 0.0289
DA-GCL(0.0,0.1) 0.1487 0.1067 0.0544 0.0299
DA-GCL(0.1,0.1) 0.1479 0.1063 0.0553 0.0303
DA-GCL(0.0,0.5) 0.1412 0.1010 0.0533 0.0290
DA-GCL(0.1,0.5) 0.1409 0.1003 0.0542 0.0296
DA-GCL(0.0,1.0) 0.1369 0.0973 0.0520 0.0282
DA-GCL(0.1,1.0) 0.1359 0.0963 0.0526 0.0285

LDA-GCL (w NGCF) 0.1488 0.1078 0.0589 0.0322
LDA-GCL (w/o EA) 0.1499 0.1087 0.0579 0.0319

LDA-GCL 0.1512 0.1090 0.0599 0.0330
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Parameter Analysis
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Figure: Parameter Analysis of λt.
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Conclusion and Future Work

Conclusion
A theoretically motivated learnable data augmentation model for GCL in
recommendation, instead of heuristic designs. (InfoMin and InfoMax)
An adversarial framework that can better enhance the effect of GCL in the
recommendation.
Our model achieves state-of-the-art performance on several public
benchmark datasets.
The relevant analytical experiments prove the efficiency of the model design.

Future work
To make improvements on the efficiency in future work. A potential
boosting scheme is the pre-trained edge operator models.
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